О механизме зарождении дождя стало известно всего несколько лет назад

физика

Аристофан, трактат "Облака" (перевод А. Пиотровского)

Сегодня никому не нужно доказывать, что пар поднимается наверх, что влажный воздух легче сухого и что наверху холодно. Зато мало кому известно, что, если охлаждать идеально чистый влажный воздух, то в нем влага очень долго не оседает. В природе, где идеальной чистоты нет, пересыщенность воздуха влагой не превышает 102%, а в камере Вильсона с тщательно профильтрованным воздухом можно достичь пересыщенности в 800%, прежде чем влага все-таки начнет оседать. Разгадка в том, что для конденсации каплям нужна какая-то твердая частица, например пылинка. Над большими городами это обычно крошечные частицы автомобильных шин, летающие на высоте несколько километров над землей. Чем больше город, тем больше над ним летает частиц резины, тем больше влаги на них может осесть и тем обильнее там будет дождь. Когда автомобилей не было, дожди все равно шли — но не в таких количествах и не в тех местах. До появления шестиполосного хайвея от Голливуда до Лос-Анджелеса большая часть дождей выпадала у берега, поскольку туча от теплого моря подплывала к холодной суше и на границе температур проливалась. С появлением мегаполисов в Южной Калифорнии облака над городами стали засеваться резиновой пылью и проливаться дальше, чем раньше. В отличие от чистых облаков, в которых капель мало, но зато они большие и проливаются быстро, засеянные пылью облака содержат очень много мелких капель, и, чтобы вырасти и пролиться, им нужно время покрутиться в "центрифугах" облака и посталкиваться между собой. За это время они проплывают несколько километров. Проследить направление ветра и поставить мощную дымовую шашку неподалеку от полей и садов — это самый простой способ заставить дождь работать в странах, где вода на вес золота.

Дождь из центрифуги

Низкие облака (их еще называют теплыми) состоят из капель размером до 10 микрон. Под своим весом они медленно опускаются в нижнюю часть облака, но, не долетая до самого низа, испаряются из-за трения о воздух, и пар снова поднимается наверх. Этот круговорот капель в облаке создает динамическое равновесие, поэтому облако не падает. Чтобы пролиться вниз дождем, этим капелькам нужно весить в сто раз больше. Но парадокс в том, что чем капля больше, тем медленнее она растет. Выросши до 10 микрон (сотая доля миллиметра), капли практически перестают расти. Если бы дождь шел оттого, что капли сами выросли за счет конденсации и под своей тяжестью стали падать, то облака терпеливо висели бы над землей целую неделю. В реальности от появления облака до дождя проходит час-полтора, а в тропиках и вовсе минут двадцать. В школе нас учили, что капли в облаке сливаются вместе и проливаются дождем. Но эксперименты европейских физиков показали, что слить вместе капли размером от 1 до 10 микрон практически невозможно. Потоки одинаковых по размеру капель плывут с одной и той же скоростью в одних направлениях и потому не смешиваются. Но даже если капли разного размера движутся навстречу друг другу, маленькая всегда обтекает большую. Ученые всего мира многие века не знали механизма зарождения дождя. Правда открылась всего несколько лет назад.

Ветер всегда дует вихрем, а не в каком-то направлении. Вихри создают в облаке центрифуги, которые крутят капли рывками в разных направлениях. Это называется турбулентностью. Турбулентность может быть опасна для самолетов, зато она совершенно необходима для дождей. Раскрученные до большой скорости капли вырываются из орбит своих центрифуг и сталкиваются, образуя крупные дождевые капли. К такому выводу пришли мы вместе с физиками-теоретиками Александром Фуксоном и Михаилом Степановым и опубликовали об этом статью в Nature. А в 2014 году небольшое, но полностью "идентичное натуральному" облако создали в физическом Институте Макса Планка, где наша теория подтвердилась экспериментально.

Пока в Германии проверяли наши расчеты, мы вместе с аспирантом МФТИ Сергеем Беланом предсказали возможность отрицательного турбофореза — явления, при котором частицы в турбулентном потоке движутся в невозможном с общепринятой точки зрения направлении. Другими словами, мы поправили самого Джеймса Максвелла, который утверждал, что движущиеся частицы всегда собираются в самом холодном месте, как, например, частички копоти на внутренней поверхности керосиновой лампы. Логика Максвелла была проста: чем выше температура, тем быстрее движутся частицы среды и быстрее толкают попавшую в них чужеродную частицу. Так, случайным образом они выталкивают ее туда, где скорость частиц среды меньше, то есть их температура ниже. В турбулентной среде это правило работает и без учета разности температур по тому же принципу, то есть частицы вылетают из турбины к ее краям. Но более крупные из них обладают своей инерцией и, оказалось, могут двигаться в центр турбины с ее краев. Это открытие хоть и усложнило микрофизические расчеты эволюции облака от его появления до наступления дождя, зато еще больше сблизило теорию и практику.

Девять уравнений на сантиметр

Метеорологи и сегодня считают физиков чудаками, а каких-то десять-двадцать лет назад они вообще не воспринимали их всерьез. Поэтому когда похожие идеи высказывал в 80-е годы ХХ века один американский физик-теоретик, метеорологи махнули на него рукой. А на рубеже столетий, спустя всего лишь 20 лет, эту идею и наши расчеты скопления дождевых капель в облаке на стыке вихрей уже не отбраковали так безоговорочно. Теперь метеорологи пытаются превратить их в свой рабочий инструмент. Физики смеются: "У них же на десятки километров облаков всего три численных параметра, а у нас на один кубический сантиметр девять уравнений в частных производных! Как эти данные вообще возможно совместить?"

Меня часто спрашивают, когда будет практическое применение моих расчетов. Использоваться в метеорологии они будут лет через 30-40. Уже появилось первое поколение метеорологов, которые понимают микрофизику. Еще несколько поколений, и они научатся ее использовать.

текст Григорий Фалькович, доктор физико-математических наук, ведущий научный сотрудник Института проблем передачи информации РАН

Вся лента