В двух предыдущих номерах рассматривались системы питания двигателей. При этом речь шла, в основном, о подаче бензина. В этой статье речь пойдет о втором, не менее важном компоненте топливо-воздушной смеси — о воздухе. И об устройствах для увеличения его подачи в двигатель.
Задача повышения мощности и крутящего момента двигателя была актуальна всегда. Самое простое решение — увеличить рабочий объем: чем больше сгорает топлива, тем выше мощность. Однако при этом существенно увеличиваются габариты и масса конструкции.
Альтернативный подход — оставить рабочий объем двигателя прежним, но подавать в единицу времени больше топлива. Увеличить подачу бензина несложно, особенно, в системах впрыска. Но при этом для сохранения состава топливной смеси необходимо пропорционально увеличить и количество подаваемого в двигатель воздуха. Возможности двигателя самостоятельно всасывать воздух ограничены, поэтому не обойтись без специального устройства, повышающего давление и, следовательно, количество воздуха на впуске. Эти устройства обычно называют нагнетателями или компрессорами.
Механический нагнетатель
Механические нагнетатели применялись в автомобильных двигателях еще в 30-е годы, тогда их чаще всего называли компрессорами. Сейчас этот термин обычно относят к турбокомпрессорам, о которых речь пойдет ниже. Конструкций механических нагнетателей довольно много, и интерес к ним разработчики проявляют до сих пор. На рисунках 1--4 представлены схемы некоторых устройств, принцип работы которых не требует дополнительных пояснений.
Есть конструкции и не совсем обычные. Одна их них — волновой нагнетатель Comprex (рис. 5) — принадлежит фирме Asea-Brown-Boweri. Ротор этого компрессора имеет аксиально расположенные камеры, или ячейки. При вращении ротора в ячейку поступает свежий воздух, после чего она подходит к отверстию в корпусе, через которое в нее попадают горячие отработавшие газы двигателя. При их взаимодействии с холодным воздухом образуется волна давления, фронт которой, движущийся со скоростью звука, вытесняет воздух в отверстие впускного трубопровода, к которому ячейка за это время успевает подойти. Поскольку ротор продолжает вращаться, отработавшие газы в это отверстие попасть не успевают, а выходят в следующее по ходу ротора. При этом в ячейке образуется волна разряжения, которая всасывает следующую порцию свежего воздуха и т. д.
Нагнетатель Comprex уже опробован несколькими автомобильными производителями, а Mazda использует его на одном из своих серийных двигателей с 1987 года.
Еще одна не совсем обычная конструкция — это спиральный, или G-образный (по форме буквы G, напоминающей спираль) нагнетатель. Идея запатентована еще в начале столетия, но из-за технических и производственных проблем на выпуск такого нагнетателя долго никто не решался. Первой, в 1985 году была фирма Volkswagen, которая применила его на двигателе купе Polo (1,3 л, 113 л. с.). В 1988 году появился более мощный нагнетатель G60, которым в течение нескольких лет комплектовались двигатели Corrado и Passat (1,8 л, 160 л. с.,), а Polo G40 выпускался вплоть до прошлого года.
Схематично (рис. 6) конструкцию G-образного нагнетателя можно представить в виде двух спиралей, одна из которых неподвижна и является частью корпуса. Вторая — вытеснитель — расположена между витками первой и закреплена на валу с эксцентриситетом в несколько миллиметров. Вал приводится от двигателя ременной передачей с отношением около 1:2.
При вращении вала внутренняя спираль совершает колебательные движения и между неподвижной (корпус) и обегающей (вытеснитель) спиралями образуются серпообразные полости, которые движутся к центру, перемещая воздух от периферии и подавая его в двигатель под небольшим давлением. Количество перемещаемого воздуха зависит от частоты вращения коленчатого вала двигателя.
Система имеет сравнительно высокий (около 65%) КПД. Трущихся частей почти нет, поэтому износ деталей незначителен. Установленный на двигателе Polo нагнетатель G40 (40 и 60 в маркировке нагнетателей Volkswagen — это ширина спиральных камер в миллиметрах) имеет внутреннюю степень сжатия 1,0; максимальное давление наддува составляет 0,72 бар. При номинальной частоте вращения ротора 10200 об./мин. за один оборот подается 566 см куб. воздуха, т. е. почти 6000 л/мин.
Схема управления механическим нагнетателем довольно проста (рис. 7). При полной нагрузке заслонка перепускного трубопровода закрыта, а дроссельная открыта — весь поток воздуха поступает в двигатель. При работе с частичной нагрузкой дроссельная заслонка закрывается, а заслонка трубопровода открывается — избыток воздуха возвращается на вход нагнетателя.
Входящий в схему охладитель наддувочного воздуха (Intercooler) является почти непременной составной частью всех, не только механических, систем наддува. При сжимании воздух, как известно, нагревается, а его плотность и, соответственно, количество кислорода в единице объема уменьшаются. Больше кислорода — лучше сгорание и выше мощность. Поэтому перед подачей в двигатель сжатый нагнетателем воздух проходит через охладитель, где его температура снижается.
Преимущества спирального нагнетателя, как и большинства компрессоров с механическим приводом: достаточно большой крутящий момент и повышенная мощность двигателя при низких оборотах, быстрая, практически мгновенная реакция на нажатие педали газа. Недостатки: относительная сложность и нетехнологичность конструкции, большие потери в приводе.
Турбокомпрессор
Более широко на современных автомобильных двигателях применяются турбокомпрессоры. Они более технологичны в изготовлении, что окупает ряд присущих им недостатков.
Турбокомпрессор отличается от вышеописанных конструкций прежде всего схемой привода (рис. 8). Здесь используется ротор с лопатками — турбина, которая вращается потоком отработавших газов двигателя. Турбина, в свою очередь, вращает размещенный на том же валу компрессор, выполненный в виде колеса с лопатками.
Выбранная схема привода (газовая вместо механической) определяет основные недостатки турбокомпрессора. При низкой частоте вращения двигателя количество отработавших газов невелико, соответственно, эффективность работы компрессора невысока. Кроме того, турбонаддувный двигатель, как правило, имеет т. н. "турбояму" — замедленный отклик на увеличение подачи топлива. Вам нужно резко ускориться — вдавливаете педаль газа в пол, а двигатель некоторое время думает и лишь потом подхватывает. Объяснение простое — требуется время на раскрутку турбины, которая вращает компрессор. На рис. 9 показана реакция нагнетателей различных типов на увеличение числа оборотов двигателя. Приведенные кривые относятся к дизелю, но их характер сохраняется и для бензинового двигателя. Хорошо видно, что самую медленную реакцию имеет турбокомпрессор, волновой нагнетатель реагирует быстрее, механический нагнетатель срабатывает практически мгновенно.
Избавиться от указанных недостатков конструкторы пытаются разными способами. В первую очередь, снижением массы вращающихся деталей турбины и компрессора. Ротор современного турбокомпрессора настолько мал, что легко умещается на ладони. Легкий ротор повышает эффективность компрессора при низких оборотах двигателя: например, у 2,0 л турбодвигателя SAAB 9000 уже при 1500 об./мин. увеличение крутящего момента за счет наддува составляет 20%. Легкий ротор, кроме того, обладает меньшей инерционностью, что позволяет турбокомпрессору быстрее раскручиваться при нажатии педали газа и уменьшает "турбояму".
Снижение массы достигается не только конструкцией ротора, но и выбором для него соответствующих материалов. Поиск новых материалов для турбин ведется многими фирмами. Основная сложность — высокая температура отработавших газов. Преуспели больше всего в этой области, пожалуй, японцы — они уже давно занимаются керамикой для двигателей внутреннего сгорания. Монолитная турбина, изготовленная из спеченного карбида кремния, при той же механической прочности весит в 3 раза меньше обычной и, соответственно, обладает гораздо меньшей инерцией. Кроме того, в случае разрыва ротора разлетающиеся осколки будут много легче — это дает возможность сделать корпус компрессора более тонким и компактным. А недавно конструкторам Nissan впервые в мировой практике удалось создать крыльчатку нагнетателя из пластмассы. Из какой — неизвестно, но говорят, получилась очень легкая.
Избавиться от недостатков турбокомпрессора позволяет не только уменьшение инерционности ротора, но и применение дополнительных, иногда довольно сложных схем управления давлением наддува. Основные задачи при этом — уменьшение давления при высоких оборотах двигателя и повышение его при низких. Одна задача решается довольно легко: избыточное давление наддува на высоких частотах вращения уменьшается, как правило, с помощью перепускного клапана.
Другая задача сложнее. Полностью решить все проблемы можно было бы использованием турбины с изменяемой геометрией, например, с подвижными (поворотными) лопатками, параметры которой можно менять в широких пределах. Такие турбины широко применяются в авиации и других областях техники. Но в крошечном роторе автомобильного компрессора механизм поворота лопаток разместить трудно.
Один из упрощенных способов — применение регулятора скорости потока отработавших газов на входе в турбину. В турбокомпрессоре Garrett VAT 25, который более подробно будет рассмотрен ниже, для этого используется подвижная заслонка.
Схема управления давлением наддува 2,0 и 2,3 литровых двигателей SAAB 9000 показана на рис. 10. Называется она APC — Automatic Performance Control. Система APC во всех режимах работы двигателя поддерживает давление наддува на максимально допустимом уровне, не доводя двигатель до детонации. Для этого использован датчик (knock sensor), по сигналу которого при возникновении детонации блок управления открывает установленный в турбине перепускной клапан, и часть отработавших газов направляется в обход турбинного колеса, что снижает давление наддува и устраняет детонацию. Помимо этого датчика в систему APC входят также и другие, измеряющие частоту вращения двигателя, нагрузку, температуру и октановое число используемого топлива — этими параметрами определяется порог детонации.
Использование APC позволило не только повысить степень сжатия 2,0 л двигателя до 9, но и сделало возможным использование топлива с низким октановым числом — до 91.
Топливная экономичность
Повышение мощности двигателя, достигается ли оно увеличением его рабочего объема или применением наддува, неизбежно влечет за собой увеличение расхода топлива. Теоретически КПД двигателей с наддувом несколько выше, чем атмосферных, поэтому удельный (на единицу мощности) расход топлива у них должен быть ниже. На практике же за счет потерь при переходных процессах он получается примерно таким же.
Конечно, и с турбодвигателем можно ехать относительно экономично, но тогда зачем он нужен? Поэтому сегодня конструкторы пытаются решить непростую задачу: уменьшить расход топлива при сохранении высокой мощности. Попробуем рассмотреть разные подходы к этой проблеме, предложенные, например, инженерами Audi и Peugeot.
Одним из путей повышения экономичности двигателя, как известно, является увеличение степени сжатия. Но в двигателях с наддувом есть ограничение: наддув увеличивает компрессию, что приводит к возникновению детонации, особенно на высоких оборотах. Поэтому степень сжатия приходится искусственно снижать: в современном атмосферном двигателе она составляет около 10, а в двигателе с наддувом обычно не превышает 8.
Конструкторам Audi удалось в определенной степени это ограничение преодолеть: в 5-цилиндровом 20-клапанном двигателе Audi S2 и Audi S4 объемом 2,2 л и мощностью 230 л. с. степень сжатия доведена до 9,3 — это для турбомотора необычно много. Результат: средний расход топлива при 90 км/ч — 7,5 л, в городе — 14 л/100 км. Двигатель пришел со спортивной Audi 200. Созданный на этой же основе мотор Avant RS2 также имеет довольно высокую степень сжатия — 9, но при таком же объеме развивает мощность 315 л. с. (за счет изменения параметров наддува). В то же время расход топлива в городе составляет лишь 14,5 л/100 км.
Упоминавшийся выше турбированный 4-цилиндровый двигатель нового SAAB 9000 объемом 2,0 л тоже имеет степень сжатия 9. Мощность поменьше: 165 л. с., но и расход топлива на трассе менее 7, а в городе — около 12 л/100 км.
Сравните эти параметры, например, с данными для Porsche 968 Turbo S. Спортивная машина, на экономию топлива особого внимания не обращали. Рабочий объем 3 л, 4 цилиндра 2 клапана/цилиндр, степень сжатия 8, мощность 305 л. с., расход топлива в городе — не менее 18 л/100 км.
Поскольку конструкторы Audi для увеличения экономичности пошли по пути повышения степени сжатия, они смогли ограничиться турбокомпрессором вполне традиционной конструкции: К24 фирмы ККК (Kuhle, Kopp und Kausch). Схема управления наддувом тоже традиционная — избыточное давление при высоких оборотах ограничивается перепускным клапаном. Габариты К24 невелики, а параметры выбраны исходя из получения высокого крутящего момента на низких оборотах. Уже при 1950 об./мин. двигатель достигает своего максимального крутящего момента (350 Нм), который сохраняется до 3000 об./мин. Кривая момента достаточно плоская: 90% его величины расположены в диапазоне частот вращения 2300--5200 об./мин. Несмотря на простоту схемы управления, "турбояма" у указанного двигателя не ощущается.
Конструкторы Peugeot выбрали другой подход. Новый 4-цилиндровый 16-клапанный двигатель Peugeot 405 Т16 имеет традиционную для турбодвигателей низкую степень сжатия 8. Но на нем использован довольно хитрый компрессор VAT 25 фирмы Garrett (не путать с VAT 69 — это совсем из другой области!). Применительно к компрессору сокращение VAT — это турбина с изменяемой площадью, или сечением (Variable Area Turbine). На входе отработавших газов в корпус турбины имеется подвижная заслонка с пневматическим приводом (рис. 11). На малых оборотах двигателя заслонка находится в прикрытом положении, уменьшая сечение канала, по которому проходит поток отработавших газов, поэтому даже при малом их объеме скорость потока получается достаточно высокой и обеспечивает необходимую частоту вращения турбины. При увеличении частоты вращения двигателя заслонка открывается, увеличивая проходное сечение — количество отработавших газов возрастает и, соответственно, повышается давление наддува. Поскольку VAT — решение упрощенное, и не в полной мере обеспечивает регулировку, перепускной клапан в схеме управления давлением наддува пришлось сохранить.
Получилось, в целом, неплохо. Своего максимального крутящего момента 288 Нм двигатель Peugeot достигает при 2600 об./мин., и это значение сохраняется до 4500 об./мин. При этом 90% величины момента расположены в диапазоне 2300--5200 об./мин. При объеме 2,0 литра двигатель развивает мощность 200 л. с. (5000 об./мин.), а расход топлива в городе составляет менее 12 л/100 км.
Overboost
Как правило, турбонаддувные двигатели имеют устройство Overboost, срабатывающее при резком нажатии на педаль газа и дополнительно повышающее давление наддува и максимальный крутящий момент двигателя (примерно на 10%). Это необходимо при резких ускорениях, например, при обгоне.
На Audi с компрессором К24 включение этого режима достигается, в общем, традиционно: при резком и полном открытии дроссельной заслонки срабатывает электронный блок управления, который быстро закрывает регулировочный клапан давления наддува. Весь поток отработавших газов направляется через турбину, давление наддува дополнительно увеличивается — Overboost. В этом режиме уже при 2100 об./мин. крутящий момент двигателя достигает 380 Нм.
Конструкторы Peugeot поступили по-другому. У компрессора Garrett VAT 25 (рис. 11) эффект Overboost достигается за счет того, что заслонка в корпусе турбины быстро откидывается в направлении турбинного колеса, резко увеличивая проходное сечение и, соответственно, поступающее количество отработавших газов. Крутящий момент двигателя 405 Т16 в этом режиме повышается до 318 Нм при 2400 об./мин.
Повышенный крутящий момент сохраняется в течение ограниченного времени: у Audi — 16 секунд, у Peugeot — 45 секунд, что почти идеально для выполнения обгонов. Чтобы не уродовать двигатель, режим Overboost не действует, если частота вращение двигателя превышает 6000 об./мин. (Audi) или если включена 1-я передача (Peugeot).
Во что обходится наддув
Бесплатным, как известно, бывает только ветер в камышах. За повышение мощности двигателей с наддувом приходится платить. И не только увеличением расхода топлива. Повышаются требования к его качеству — для большинства турбированных двигателей требуются бензины с октановым числом 96--98. Несмотря на то, что поршни, кольца, головки и шатуны усилены, ресурс двигателя ощутимо снижается, тем в большей степени, чем выше давление наддува. Можно считать, что в среднем ресурс двигателя с турбокомпрессором не превышает 100 тыс. км, а ресурс самого компрессора составляет около 10 тыс. часов. У механических нагнетателей он выше — около 25 тыс. часов. Для системы смазки турбокомпрессора требуются специальные масла, выдерживающие высокие температуры и частоты вращения более 100 000 об./мин. Температура в турбинной части компрессора доходить до 1000°С, поэтому его подшипники требуют дополнительного водяного охлаждения. Все изложенное для потребителя выливается в довольно значительное увеличение стоимости автомобиля и его обслуживания.
Для бензиновых двигателей массовых моделей наддув вряд ли можно считать удачным способом повышения мощности. Volkswagen, например, в этом году отказался от упоминавшегося выше наддувного двигателя на Polo. Более перспективными, особенно с точки зрения топливной экономичности, видимо, можно считать такие направления, как многоклапанная техника, совершенствование систем впрыска, переобеднение смеси и ее послойное распределение в цилиндрах.
Бензиновые двигатели с турбонаддувом — это, пожалуй, удел дорогих, со спортивным характером автомобилей. Maserati, например, может позволить себе выпускать все двигатели с системой наддува, да еще не с одним, а с двумя турбокомпрессорами — на V-образных двигателях. Такую конструкцию называют Twin Turbo. Запомнить легко — как Twin bed в гостинице. Иногда название трансформируется в Biturbo, что сути дела не меняет: турбокомпрессоры стоят параллельно и каждый обслуживает свою секцию цилиндров.
Такой автомобиль, как правило, могут приобрести немногие. Правда, при нынешней российской налоговой политике, когда приходится платить пошлину с объема двигателя, некоторые могут предпочесть турбированный вариант, благо они все еще имеются в каталогах большинства производителей. Дело вкуса. И денег. Кстати Mercedes-Benz и BMW, продукция которых у нас столь популярна, не имеют сегодня ни одного серийного бензинового турбодвигателя.
С экономической, экологической, да и многих других точек зрения весьма привлекательно выглядят турбированные дизели. Но об этом в следующий раз.
Виталий Струговщиков