Электрохимия фотонных кристаллов
исследования / фотоника
В последнее десятилетие развитие микроэлектроники затормозилось, поскольку уже практически достигнуты ограничения по быстродействию стандартных полупроводниковых устройств. Все большее число исследований посвящается разработке альтернативных полупроводниковой электронике областей - это спинтроника, микроэлектроника со сверхпроводящими элементами, фотоника и некоторые другие.
Новый принцип передачи и обработки информации с помощью светового, а не электрического сигнала может ускорить наступление нового этапа информационного века.
От простых кристаллов к фотонным
Основой электронных устройств будущего могут стать фотонные кристаллы - это синтетические упорядоченные материалы, в которых диэлектрическая проницаемость периодически меняется внутри структуры. В кристаллической решетке традиционного полупроводника регулярность, периодичность расположения атомов приводит к образованию так называемой зонной энергетической структуры - с разрешенными и запрещенными зонами. Электрон, энергия которого попадает в разрешенную зону, может передвигаться по кристаллу, а электрон с энергией в запрещенной зоне оказывается "запертым".
По аналогии с обычным кристаллом возникла идея кристалла фотонного. В нем периодичность диэлектрической проницаемости обуславливает возникновение фотонных зон, в частности, запрещенной, в пределах которой распространение света с определенной длиной волны подавлено. То есть, будучи прозрачными для широкого спектра электромагнитного излучения, фотонные кристаллы не пропускают свет с выделенной длиной волны (равной удвоенному периоду структуры по длине оптического пути).
Фотонные кристаллы могут иметь различную размерность. Одномерные (1D) кристаллы представляют собой многослойную структуру из чередующихся слоев с разными показателями преломления. Двумерные фотонные кристаллы (2D) можно представить в виде периодической структуры из стержней с разной диэлектрической проницаемостью. Первые синтетические прообразы фотонных кристаллов были трехмерными и созданы еще в начале 1990-х годов сотрудниками исследовательского центра Bell Labs (США). Для получения периодической решетки в диэлектрическом материале американские ученые высверливали цилиндрические отверстия таким образом, чтобы получить трехмерную сеть пустот. Для того, чтобы материал стал фотонным кристаллом, его диэлектрическая проницаемость была модулирована с периодом в 1 сантиметр во всех трех измерениях.
Но и сегодня, даже с помощью самых современных и дорогостоящих методов электронной литографии и анизотропного ионного травления, с трудом удается изготовить бездефектные трехмерные фотонные кристаллы с толщиной более 10 структурных ячеек.
Фотонные кристаллы должны найти широкое применение в фотонных интегральных технологиях, которые в перспективе заменят электрические интегральные схемы в компьютерах. При передаче информации с использованием фотонов вместо электронов резко сократится энергопотребление, увеличатся тактовые частоты и скорость передачи информации.
Природными аналогами фотонных кристаллов являются перламутровые покрытия раковин (1D), усики морской мыши, многощетинкового червя (2D), крылья африканской бабочки-парусника и полудрагоценные камни, например, опал (3D).
Фотонный кристалл из оксида титана
Оксид титана TiO2 обладает набором уникальных характеристик, таких как высокий показатель преломления, химическая стабильность и низкая токсичность, что делает его наиболее перспективным материалом для создания одномерных фотонных кристаллов. Если рассматривать фотонные кристаллы для солнечных батарей, то здесь оксид титана выигрывает из-за своих полупроводниковых свойств. Ранее было продемонстрировано увеличение КПД солнечных элементов при использовании слоя полупроводника с периодической структурой фотонного кристалла, в том числе фотонных кристаллов из оксида титана.
Рис. 1. Изображение поперечного сечения микроструктуры фотонного кристалла из анодного оксида титана. Фотонный кристалл состоит из трубок с одинаковым внешним диаметром. В правом нижнем углу видна рассеченная трубка, внутренний диаметр которой периодически изменяется.
Но пока применение фотонных кристаллов на основе диоксида титана ограничивается отсутствием воспроизводимой и недорогой технологии их создания.
Сотрудники химического факультета и факультета наук о материалах МГУ - Нина Саполетова, Сергей Кушнир и Кирилл Напольский - усовершенствовали синтез одномерных фотонных кристаллов на основе пористых пленок оксида титана.
"Анодирование (электрохимическое окисление) вентильных металлов, в том числе алюминия и титана, является эффективным методом получения пористых оксидных пленок с каналами нанометрового размера", - пояснил руководитель группы электрохимического наноструктурирования, кандидат химических наук Кирилл Напольский.
Анодирование обычно проводят в двухэлектродной электрохимической ячейке. В раствор электролита опускают две металлические пластины - катод и анод, и подают электрическое напряжение. На катоде выделяется водород, на аноде происходит электрохимическое окисление металла. Если периодически менять прикладываемое к ячейке напряжение, то на аноде формируется пористая пленка с заданной по толщине пористостью.
Эффективный показатель преломления будет модулироваться, если диаметр пор будет периодически меняться внутри структуры. Разработанные ранее методики анодирования титана не позволяли получать материалы с высокой степенью периодичности структуры. Химики из МГУ разработали новый способ анодирования металла с модуляцией напряжения в зависимости от заряда анодирования, который позволяет с высокой точностью создавать пористые анодные оксиды металлов. Возможности новой методики химики продемонстрировали на примере одномерных фотонных кристаллов из анодного оксида титана.
В результате изменения напряжения анодирования по синусоидальному закону в диапазоне 40-60 Вольт ученые получили нанотрубки анодного оксида титана с постоянным внешним диаметром и периодически изменяющимся внутренним диаметром (см. рисунок).
"Применяемые ранее методики анодирования не позволяли получать материалы с высокой степенью периодичности структуры. Мы разработали новую методику, ключевым составляющим которой является in situ (непосредственно во время синтеза) измерение заряда анодирования, что позволяет с высокой точность контролировать толщину слоев с различной пористостью в формируемой оксидной пленке", - пояснил один из авторов работы, кандидат химических наук Сергей Кушнир.
Разработанная методика упростит создание новых материалов с модулированной структурой на основе анодных оксидов металлов. "Если в качестве практического использования методики рассматривать применение в солнечных батареях фотонных кристаллов из анодного оксида титана, то еще предстоит провести систематическое исследование влияния структурных параметров таких фотонных кристаллов на эффективность преобразования света в солнечных батареях", - уточнил Сергей Кушнир.
Вентильные металлы
Вентильными металлами принято называть металлы, оксиды которых образуют пленки такие, что из проводимость в противоположных направлениях сильно различается (это и есть "вентильное" свойство). Типичные представители - алюминий, тантал, титан, ниобий.
Фотоника, спинтроника и другие оники
Электроника называется так потому, что агентом, передающим сигнал в "электронных" приборах, являются электроны. Развитие технологий миниатюризации превратило ее во второй половине XX века в микроэлектронику, но электроны остались теми же самыми. И в этом отношении ультрасовременные гаджеты и суперкомпьютеры ничем не отличаются от довоенного лампового приемника.
Но, кроме электронов, в микромире есть и другие частицы, а также квазичастицы (квазичастица - это квантовый объект, в некоторых отношениях подобный частице, но не являющийся ею в точном смысле слова). Использование каждой из них для передачи сигнала потенциально может к построению новой ветви приборостроения. Во всех этих направлениях ведутся энергичные теоретические и экспериментальные исследования. Вот главные (квази)частицы приборов будущего:
Фононика. Фонон - это квант колебаний кристаллической решетки.
Магноника. Магнон - квант колебаний взаимодействующих квантовых магнитов (магнитных моментов). Соответственно, магноны характерны для магнитных веществ.
Фотоника. Фотон - квант колебаний электромагнитного поля (в, частности, света). Термин "фотоника" употребляется и в более широком смысле как вообще наука о свойствах фотонов.
Плазмоника. Плазмоны родственны электронам, но это не сами электроны, а кванты коллективных колебаний электронного газа в твердом теле.
Спинтроника также использует в качестве переносчика сигнала электроны, но эксплуатируется не заряд, как в обычной электронике, а магнитный момент (спин) электрона.
В обычной микроэлектронике выделяют также раздел "микроэлектроника со сверхпроводящими элементами", поскольку свойства электронов в сверхпроводящем состоянии радикально отличаются от стандартных.
Перечисленные выше - это канонические квантовые объекты, известные давно, но еще не нашедшие массовых технологических применений. В последние же годы обнаружено несколько новых, экзотических квазичастиц, и с каждой из них немедленно возникает новая "оника". Так обсуждается возможность использования в микроприборах, компьютерах, в том числе квантовых, и элементах памяти скирмионов (это двумерный магнитный вихрь), бобберов (трехмерный родственник скирмиона) и майорановских возбуждений (а это вообще в трех словах не описать).