Подобно плазме
Искусственный интеллект помог исследовать свойства флюида водорода при высоких давлениях
Ученые подтвердили, что поведение проводящего флюида водорода при высоких давлениях подобно плазме. Понимание поведения водорода в критических условиях необходимо для исследований в области термоядерного синтеза, сверхпроводимости и получения представлений об устройстве планет-гигантов.
Фото: Getty Images
Фото: Getty Images
Физики поставили перед собой задачу определить природу фазового перехода флюида водорода из молекулярной фазы в проводящую (металлическую). В 2020 году из теоретико-вычислительных работ стало известно, что при высоком давлении у водорода наблюдается аномальный рост диффузии. Однако из экспериментальных данных не получается определить коэффициенты диффузии и вязкости. А прямые ab initio расчеты затратны по вычислительным ресурсам и времени. Поэтому исследователи решили применить комбинацию методов машинного обучения и классической молекулярной динамики. Такой подход позволил получить точность ab initio расчетов и изучить динамические свойства флюида водорода в больших моделях.
«Для построения межатомного потенциала мы собрали данные ab initio расчетов — энергии и силы для разных конфигураций систем при различных температурах и плотностях. Наш соавтор Николай Щелкачев (ИФВД РАН) в режиме активного обучения отобрал конфигурации с наибольшей ошибкой предсказания и к ним провел дополнительные расчеты для улучшения точности модели. На выходе у нас получился DeepMD-потенциал — функция энергии системы от координат всех атомов. Он воспроизводит результаты ab initio расчетов, но значительно быстрее»,— объяснил Вячеслав Лукьянчук, младший научный сотрудник Центра вычислительной физики, ассистент кафедры вычислительной физики МФТИ.
Слева — визуализация исследуемой модели водорода, справа в верхней части рисунка — зависимости коэффициента диффузии от плотности при различных температурах из работ Cheng et al. 2020 (красным цветом) и Bund et al. 2021 (зеленым цветом) показаны. Результаты, полученные в настоящей работе, приведены в нижней части. При 700, 800 и 900 K коэффициент диффузии резко возрастает, указывая на диссоциацию молекулярных связей и резкое повышение подвижности атомов. При 1100 K скачок коэффициента диффузии уже не наблюдается, что свидетельствует о превышении критической точки (отмечено синей звездочкой)
Фото: Николай Кондратюк
Слева — визуализация исследуемой модели водорода, справа в верхней части рисунка — зависимости коэффициента диффузии от плотности при различных температурах из работ Cheng et al. 2020 (красным цветом) и Bund et al. 2021 (зеленым цветом) показаны. Результаты, полученные в настоящей работе, приведены в нижней части. При 700, 800 и 900 K коэффициент диффузии резко возрастает, указывая на диссоциацию молекулярных связей и резкое повышение подвижности атомов. При 1100 K скачок коэффициента диффузии уже не наблюдается, что свидетельствует о превышении критической точки (отмечено синей звездочкой)
Фото: Николай Кондратюк
Разработанный потенциал сохраняет точность квантовых расчетов и на порядки ускоряет вычисления для большого числа частиц. Также он предоставляет данные о колебательных спектрах, коэффициентах диффузии и вязкостях в диапазонах температур и плотностей. С его помощью ученые впервые рассчитали вязкость плотного разогретого флюида водорода, что ранее было недоступно из-за больших затрат вычислительных ресурсов. Оказалось, что она значительно увеличивается при фазовом переходе, а затем снижается с дальнейшим ростом плотности. Это все соответствует тенденциям, наблюдаемым в щелочных металлах, таких как литий.
«По данным наших расчетов оказалось, что при фазовом переходе вязкость флюида водорода значительно увеличивается, а затем спадает с дальнейшим ростом плотности»,— рассказал Гинтарас Гляудялис, студент четвертого курса ЛФИ МФТИ.
«Мы разрабатываем идею о том, что вязкость флюида водорода при высоких давлениях может вести себя так же, как и у щелочных расплавов. Это будет проверено в наших будущих исследованиях»,— рассказал Николай Кондратюк, исполнительный директор Центра вычислительной физики МФТИ.
Расчет подтверждает существование фазового перехода первого рода в жидком водороде, сопровождающегося резким изменением плотности, диффузии и вязкости. Результаты показывают значительное увеличение коэффициента диффузии при температурах 700, 800 и 900 К и соответствующих им плотностей фазового перехода. Такие изменение связаны с увеличением подвижности атомов, вызванным диссоциацией молекул водорода. Полученная картина сравнивалась с исследованиями теории функционала плотности и экспериментальными данными. Они демонстрируют согласованность, подтверждая эффективность разработанного потенциала для моделирования флюида водорода.
«Используемый подход универсален и подходит для широкого круга задач, где прямые квантовые расчеты слишком громоздки. Однако потенциал необходимо «обучать» под конкретную задачу, собрав статистику ab initio расчетов»,— комментирует Ильнур Саитов, сотрудник Университета Л’Акуилы.
«Мы планируем дальнейшее совершенствование модели, а именно: учет квантовых ядерных эффектов, добавление большей статистики в обучающую выборку, расчет для изотопов водорода и применение аналогичного подхода к другим водородсодержащим системам»,— подытоживает Николай Кондратюк.
В работе участвовали ученые из МФТИ, Объединенного института высоких температур РАН, Института физики высоких давлений РАН, Университета Л’Акуилы (Италия), НИУ ВШЭ.
Подготовлено пресс-службой МФТИ
Использованы материалы статьи.