Россия — абсолютный мировой монополист в разработке энергодвигательной установки с ядерным реактором мегаваттного класса.
Проект создания транспортно-энергетического модуля на основе ядерной энергодвигательной установки (ЯЭДУ) мегаваттного класса выполняется совместно предприятиями Росатома и Роскосмоса в соответствии с решением, принятым в 2009 году президентской комиссией по модернизации. Не имеющая аналогов энерготранспортная установка позволит создать качественно новую технику высокой энерговооруженности для изучения и освоения дальнего космоса. Новый проект предполагает использование ионных электрореактивных двигателей, в которых реактивная тяга создается за счет ускоренного электрическим полем потока ионов. При использовании космических ядерных энергоустановок можно приступить к решению таких задач, как полет на Марс, детальные исследования планет и их спутников, промышленное производство в космосе. Также можно будет заниматься очисткой околоземного космического пространства от космического мусора, бороться с астероидной опасностью, создавать на планетах автоматизированные базы.
Большими достоинствами проекта являются практически важные эксплуатационные характеристики — высокий ресурс (10 лет эксплуатации), значительный межремонтный интервал и продолжительное время работы на одном включении. Они не могут не впечатлять специалистов из других стран, в первую очередь США.
Тайный проект
ЯЭДУ содержит три главные устройства: 1) реакторную установку с рабочим телом и вспомогательными устройствами (теплообменник-рекуператор и турбогенератор-компрессор); 2) электроракетную двигательную установку; 3) холодильник-излучатель.
Проблема радиационной безопасности решается теневой защитой — реактор закрывают только с одной стороны, с той, где расположено оборудование и полезный груз. Излучение может свободно распространяться во все остальные стороны, там нет ничего, кроме космической пустоты. Так можно существенно сэкономить на весе защиты.
Ядерный реактор
рис.01 Компоновка ЯЭДУ. Транспортно-энергетический модуль
Масса кг 20290
Габаритные размеры (рабочее положение), м 53,4-21,6-21,6
Электрическая мощность ЭБ, МВт 1,0
Удельный импульс ЭРД, км/с не менее 70,0
Мощность ЭРД, МВт не более 0,94
Суммарная тяга маршевых ЭРД, Н не менее 18,0
Ресурс, лет 10
Средство выделения РН «Ангара-А5»
Назначение - межорбитальная буксировка полезной нагрузки
- передача на полезную нагрузку энергии (до 225 кВт)
Главным конструктором реакторной установки и координатором работ от Росатома является НИКИЭТ — Научно-исследовательский и конструкторский институт энерготехники имени Н.А. Доллежаля.
С атомным реактором для космического применения нет принципиальных затруднений. В период с 1962 по 1993 год в нашей стране был накоплен богатый опыт производства аналогичных установок. Похожие работы велись и в США таб. 01.
По состоянию на июль 2015 года в НИКИЭТ уже защищен технический проект активной зоны — ключевого элемента ядерного реактора. В конце года планируется защитить технический проект всей реакторной установки.
С физической точки зрения это компактный газоохлаждаемый реактор на быстрых нейтронах.
Сейчас в двух центрах — Институте реакторных материалов в городе Заречном Свердловской области и Научно-исследовательском институте атомных реакторов в Димитровграде — проходят испытания тепловыделяющих элементов (твэлов). Они разработаны в Физико-энергетическом институте им. А.И. Лейпунского (Обнинск), а изготовлены в прошлом году на Машиностроительном заводе в Электростали (ОАО "ТВЭЛ").
Этому топливу придется работать при очень высоких температурах. В обычной ядерной топливной энергетике температуры на тысячу градусов ниже. Поэтому необходимо было выбрать такие материалы, которые смогут сдерживать негативные факторы, связанные с температурой, и в то же время позволят топливу выполнять его основную функцию — нагревать газовый теплоноситель, с помощью которого будет производиться электроэнергия.
В качестве топлива используется соединение (диоксид или карбонитрид) урана, но, поскольку конструкция должна быть очень компактной, уран имеет более высокое обогащение по изотопу 235, чем в твэлах на обычных (гражданских) атомных станциях, возможно, выше 20%. А оболочка их — монокристаллический сплав тугоплавких металлов на основе молибдена (разработка НПО "Луч" в Подольске).
Уникальность проекта в использовании специального теплоносителя — гелий-ксеноновой смеси. В установке обеспечивается высокий коэффициент полезного действия. Схема дана на рис. 02.
Холодильник
рис. 02 Компоновка ядерной установки. 3D-модель РУ с карбонитридным топливом
Охлаждение газа в процессе работы ядерной установки совершенно необходимо. Как же сбрасывать тепло в открытом космосе?
На Земле для охлаждения электростанций используется либо вода, либо гигантские градирни. В космосе эти способы не доступны. Единственная возможность — охлаждение излучением. Нагретая поверхность в пустоте охлаждается, излучая электромагнитные волны в широком диапазоне, в том числе видимый свет.
Общая схема холодильника представлена на рис. 03-04.
По состоянию на лето 2015 г. промежуточные результаты такие:
- для экспериментального подтверждения принципа работы капельного холодильника-излучателя был проведен первый этап космического эксперимента "Капля-2" на российском сегменте Международной космической станции;
- для теплообменных аппаратов выбрана, экспериментально обоснована и изготовлена моноблочная бескорпусная конструкция с использованием теплообменной матрицы из унифицированных штампованных пластин.
Рис. 03 Параметры холодильника ЯЭДУ
Вариант компоновки ЯЭДУ в составе многоразового межорбитального буксира:
- с панельным холодильником-излучателем
- с капельным холодильником излучателем
Двигатель
В 2010 году были сформулированы технические предложения по проекту. С этого года началось проектирование.
Известно, что с начала 1960-х годов в мире было разработано несколько типов электрореактивных двигателей: ионный, стационарный плазменный, двигатель с анодным слоем, импульсный плазменный двигатель, магнитоплазменный, магнитоплазмодинамический.
Исследовательский центр имени М.В. Келдыша (ранее РНИИ, НИИ-1, НИИТП) разработал и изготовил опытный образец ионного двигателя высокой мощности ИД-500. Его параметры такие: мощность 32-35 кВт, тяга 375-750 мН, удельный импульс 70000м/с, коэффициент полезного действия 0,75.
На данном этапе опытный образец ИД-500 имеет электроды ионно-оптической системы, выполненные из титана с диаметром перфорированной отверстиями зоны 500 мм, катод газоразрядной камеры, который обеспечивает ток разряда в диапазоне 20-70 А и катод-нейтрализатор, способный обеспечить нейтрализацию ионного пучка в диапазоне токов 2-9 А. На следующем этапе разработки двигатель будет оснащен электродами из углерод-углеродного композиционного материала и катодом с графитовым поджигным электродом.
Принцип действия ионного двигателя следующий. В газоразрядной камере с помощью анодов и катодного блока, расположенных в магнитном поле, создается разреженная плазма. Из нее эмиссионным электродом "вытягиваются" ионы рабочего тела (ксенона или другого вещества) и ускоряются в промежутке между ним и ускоряющим электродом.
По планам, к концу 2017 года будет осуществлена подготовка ядерной энергодвигательной установки для комплектации транспортно-энергетического модуля (перелетного межпланетного модуля). К концу 2018 года ЯЭДУ будет подготовлена к летно-конструкторским испытаниям. Финансирование проекта осуществляется за счет средств федерального бюджета. Смета на период 2010-2018 гг. составляет 7245 млн руб.
Тайный проект
Проект создания транспортно-энергетического модуля на основе ядерной энергодвигательной установки мегаваттного класса вызвал нешуточные научно-технологические дискуссии в среде двух выликих кланов — атомного и космического. Но пока живы "проигравшие", подробности решено не выносить на публику.
Таб. 01 Сравнительные показатели результатов, полученных по программам разработок ядерных реактивных двигателей в СССР и в США в 1959-1989 гг.
|